Capillary electrochromatography with contactless conductivity detection for the determination of some inorganic and organic cations using monolithic octadecylsilica columns.

نویسندگان

  • Thanh Duc Mai
  • Hung Viet Pham
  • Peter C Hauser
چکیده

A fast separation of alkali and alkaline earth metal cations and ammonium was carried out by capillary electrochromatography on monolithic octadecylsilica columns of 15 cm length and 100 microm inner diameter using water/methanol mixtures containing acetic acid as mobile phase. On-column contactless conductivity detection was used for quantification of these non-UV-absorbing species. The method was also extended successfully to the determination of small amines as well as of amino acids, and the separation selectivity was optimized by varying the composition of the mobile phase. Detection limits of about 1 microM were possible for the inorganic cations as well as for the small amines, while the amino acids could be quantified down to about 10 microM. The separation of 12 amino acids was achieved in the relatively short time of 10 min.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of contactless conductivity detection for non-invasive characterisation of monolithic stationary-phase coatings for application in capillary ion chromatography.

A capacitively-coupled contactless conductivity detector (C4D) has been utilised as an on-capillary detector within a capillary ion chromatograph, incorporating a reversed-phase monolithic silica capillary column semi-permanently modified with a suitable ionic surfactant. The monolithic capillary column (150 x 0.1 mm i.d.) was modified using sodium dioctyl sulfosuccinate (DOSS), an anionic surf...

متن کامل

Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles.

Using sol-gel technology, a porous glass matrix (xerogel) is formed in a capillary column and acts as a support for a stationary phase of chromatographic particles used in capillary electrochromatography. Preparation of the sol-gel matrix and immobilization of the octadecylsilica (ODS) stationary phase occur in a single step. The presence of the particles in the column greatly reduces matrix cr...

متن کامل

Application of a low impedance contactless conductometric detector for the determination of inorganic cations in capillary monolithic column chromatography.

Poly(glycidyl methacrylate) cation exchange monolithic column was prepared in fused-silica capillaries of 320 μm i.d. by thermally initiated radical polymerization and utilized in capillary ion chromatography. With 15 mM methanesulfonic acid as the mobile phase, the separations of a mixture of inorganic cations (Li(+), Na(+), NH(4)(+), K(+)) was tested by using a capacitively coupled contactles...

متن کامل

On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices.

In this contribution, a capillary electrophoresis microdevice with an integrated on-chip contactless four-electrode conductivity detector is presented. A 6-cm-long, 70-microm-wide, and 20-microm-deep channel was etched in a glass substrate that was bonded to a second glass substrate in order to form a sealed channel. Four contactless electrodes (metal electrodes covered by 30-nm silicon carbide...

متن کامل

Hybrid organic-inorganic phenyl monolithic column for capillary electrochromatography.

A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytica chimica acta

دوره 653 2  شماره 

صفحات  -

تاریخ انتشار 2009